博客
关于我
1118 Birds in Forest
阅读量:424 次
发布时间:2019-03-06

本文共 3465 字,大约阅读时间需要 11 分钟。

Some scientists took pictures of thousands of birds in a forest. Assume that all the birds appear in the same picture belong to the same tree. You are supposed to help the scientists to count the maximum number of trees in the forest, and for any pair of birds, tell if they are on the same tree.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive number N (≤) which is the number of pictures. Then N lines follow, each describes a picture in the format:

K B​1​​ B​2​​ ... B​K​​

where K is the number of birds in this picture, and B​i​​'s are the indices of birds. It is guaranteed that the birds in all the pictures are numbered continuously from 1 to some number that is no more than 1.

After the pictures there is a positive number Q (≤) which is the number of queries. Then Q lines follow, each contains the indices of two birds.

Output Specification:

For each test case, first output in a line the maximum possible number of trees and the number of birds. Then for each query, print in a line Yes if the two birds belong to the same tree, or No if not.

Sample Input:

43 10 1 22 3 44 1 5 7 83 9 6 4210 53 7
 

Sample Output:

2 10YesNo

 

题意:

  给出一组图画,问画中有几棵树,几只鸟,同一组画中的鸟在同一棵树上。

思路:

  这道题用到了并查集的知识,并查集中有两个重要的函数

1 void findFather(int x) { 2     int a = x; 3     while (x != fa[x]) { 4         x = fa[x]; 5     } 6     while (a != fa[a]) {       // 路径压缩 7         int z = a; 8         a = fa[a]; 9         fa[z] = x;10     }11     return x;12 }

  这个函数是用来寻找某个节点的祖先结点的

1 void Union(int x, int y) {2     int faA = findFather(x);3     int faB = findFather(y);4     if (faA != faB) fa[faA] = faB;5 }    6

  用来合并两个不同的子集。

  


  首先,我们要初始化fa数组,使每个结点的祖先结点是其本身。 

  然后要做的就是将同一副画中的每一个结点通过Union函数合并到一个集合中。

  用exist数组来存储结点是否存在。cnt数组来存储以某一个节点为祖先结点的集合中节点的个数。

 

Code:

1 #include 
2 3 using namespace std; 4 5 const int maxn = 10005; 6 vector
fa(10005); 7 8 int findFather(int x) { 9 int a = x;10 while (x != fa[x]) {11 x = fa[x];12 }13 while (a != fa[a]) {14 int z = a;15 a = fa[a];16 fa[z] = x;17 }18 return x;19 }20 21 void Union(int x, int y) {22 int faX = findFather(x);23 int faY = findFather(y);24 if (faX != faY) fa[faY] = faX;25 }26 27 int main() {28 int n;29 cin >> n;30 31 for (int i = 0; i < maxn; ++i) {32 fa[i] = i;33 }34 35 int k, id, m;36 vector
exist(10005, false);37 vector
cnt(10005, 0);38 int numTrees = 0;39 int numBirds = 0;40 for (int i = 0; i < n; ++i) {41 cin >> k >> id;42 exist[id] = true;43 for (int j = 1; j < k; ++j) {44 cin >> m;45 exist[m] = true;46 Union(id, m);47 }48 }49 for (int i = 1; i < maxn; ++i) {50 if (exist[i]) {51 int root = findFather(i);52 cnt[root]++;53 }54 }55 for (int i = 1; i < maxn; ++i) {56 if (exist[i] && cnt[i] > 0) {57 numTrees++;58 numBirds += cnt[i];59 }60 }61 cout << numTrees << " " << numBirds << endl;62 int querys;63 cin >> querys;64 for (int i = 0; i < querys; ++i) {65 int bird1, bird2;66 cin >> bird1 >> bird2;67 if (findFather(bird1) == findFather(bird2))68 cout << "Yes" << endl;69 else70 cout << "No" << endl;71 }72 return 0;73 }

 

参考:

 

转载地址:http://antuz.baihongyu.com/

你可能感兴趣的文章
Nginx使用proxy_cache指令设置反向代理缓存静态资源
查看>>
Nginx做反向代理时访问端口被自动去除
查看>>
Nginx入门教程-简介、安装、反向代理、负载均衡、动静分离使用实例
查看>>
Nginx入门简介和反向代理、负载均衡、动静分离理解
查看>>
nginx入门篇----nginx服务器基础配置
查看>>
nginx反向代理
查看>>
Nginx反向代理
查看>>
nginx反向代理、文件批量改名及统计ip访问量等精髓总结
查看>>
Nginx反向代理与正向代理配置
查看>>
Nginx反向代理及负载均衡实现过程部署
查看>>
Nginx反向代理和负载均衡部署指南
查看>>
Nginx反向代理是什么意思?如何配置Nginx反向代理?
查看>>
nginx反向代理解决跨域问题,使本地调试更方便
查看>>
nginx反向代理转发、正则、重写、负摘均衡配置案例
查看>>
Nginx反向代理配置
查看>>
Nginx启动SSL功能,并进行功能优化,你看这个就足够了
查看>>
nginx启动脚本
查看>>
Nginx和Tomcat的区别
查看>>
Nginx在Windows上和Linux上(Docker启动)分别配置基本身份认证示例
查看>>
Nginx在Windows下载安装启动与配置前后端请求代理
查看>>